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into allyl alcohols.5 Regiospecific generation of synthetically 
versatile a,/3-unsaturated ketones from latent precursors, as 
we discuss herein, complements extensive recent work of others 
on enone synthesis. Some examples are 1,3-alkylative carbonyl 
transposition,6 alkylative elimination of a-sulfinyl esters,7 and 
introduction of a,/3-unsaturation into existing ketones8a,b and 
esters8c via selenoxide eliminations. 

From the outset of our studies with 7-chloroallyl sulfoxides,3 

it was clear that such species would in some cases rearrange 
so rapidly that deprotonation and alkylation prior to "self-
immolative" rearrangement-elimination9 might be prob­
lematic. Thus, sulfoxide I1 0 can be methylated and the crude 
la (estimated yield ca. 65%) completely transformed during 
2 h of refluxing in carbon tetrachloride-cyclohexene to 
7ra«s-3-pentene-2-one (2) and the phenylsulfenyl chloride 
adduct 3 (Scheme I). However, la and comparably alkylated 
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sulfoxides prepared directly from the corresponding sulfides 
are so prone to rearrange that further alkylation (as in Scheme 
I) cannot be efficiently carried out.11 Conversely, further 
substitution of 1 only at the methyl group not surprisingly slows 
down rearrangement to a rate facilitating experimental ma­
nipulation, while not diminishing the realization of excellent 
yields. Qualitatively, the ease of rearrangement12 follows the 
order shown with the most stable type of substrate (C) of pri-
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mary concern herein. At least th ree mechanisms for arylsul-
fenyl chloride extrusion can be envisaged (see Scheme I) with 
nonpolar pathways (e.g., episulfuranes or four-center) probably 
more likely in the solvents used (primari ly carbon te t rachlo­
ride) . 

(Z)- l ,2 ,4-Tr ichloro-2-butene 1 3 (4) provides an opportunity 
to sequentially and selectively consume each chlorine a tom. 1 4 

The two allylic chlorines a re obviously much more reactive 
than the vinyl chlorine. Moreover, our earlier experiences with 
carbon alkylation, using 2,3-dichloropropene and 1,3-di-
chloro-2-butene, convinced us that the allylic chlorines in 4 
might have significantly different reactivities in bimolecular 
nucleophilic substi tut ion, as has been observed with other 
nucleophiles.15 W e shall see that this information can be used 
to advantage in synthesis. 

In initial experiments , excess thiophenoxide reacted with 
4 to provide 5 in 86% yield. w-Chloroperbenzoic acid oxidation 
of 5 proceeded virtually quant i ta t ively, giving bis sulfoxide 6, 
as a mixture of s tereomers. As formulated in Scheme II , re­
versible [2,3] sigmatropic rear rangement 4 of 6 can proceed in 
both possible modes when this substance is heated in carbon 
te t rach lor ide-cyc lohexene . However , wi thout thiophil ic 
t rapping 5 of sulfenate 7b, only intramolecular decomposition9 

of 7a to 8 occurs (85% yield from 6)< 
l-Phenylsulf inyl-3-buten-2-one (8) possesses the usual 

properties of both an electrophilic Michael acceptor and an 
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active methylene compound capable of undergoing electro­
philic substitution16 as well as Pummerer reactions.17 The first 
property is exemplified by successful conversions of 8 to ad-
ducts 9 (in 80% yield) and 10 (nearly quantitative, but difficult 

to purify because of aldolization, etc.). These conjugate ad­
ditions have potential relevance to alkaloid and steroid syn­
thesis. Further transformations of 10, for the latter purpose,18 

were curtailed in favor of a more promising approach involving 
stepwise regiospecific attack of nucleophiles upon 4. 
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1st Nu: f 2nd Nu': 

CH2Cl 

Thiophenoxide (1 equiv) converts 4 to (Z)-l,2-dichloro-
4-phenylthio-2-butene10 (11), whose derived sulfoxide 12 
(quantitative yield) is a latent equivalent of l-chloro-3-
buten-2-one (13). The actual conversion of 12 to 13 was easily 

12 

a 
Cl *^ + 3 

O 
13 

realizable (ca. 90% yield, based on isolated 3), thus providing 
further evidence for the regiospecific nucleophilic displacement 
leading to 11. However, 13 is an ambident electrophile whose 
expected reaction course with a particular nucleophile might 
be unpredictable and capricious in practice. Thus it became 
preferable to replace the labile chlorine in 11 by a group which 
would render the resultant enone electrophilic at only one 
position and usefully nucleophilic as well. To illustrate, we 
successfully reacted 11 with diethyl malonate, which at this 
stage could not react with the latent enone grouping in 11. The 
resulting monoalkylated malonic ester 14 provides the op­
portunity for further electrophilic substitution. In practice, 
alkylation of 14 with m-methoxybenzyl bromide proceeded 
in high yield to give 15 (a sequence preferable to attacking 11 
with a bulkier benyzl malonate anion). It is extremely unlikely 
that 13 could have provided 17 free of competitive, unwanted 
Michael addition, as was accomplished in the sequence 14 —• 
17 depicted in Scheme III. When 15 was oxidized to sulfoxide 

Scheme III 
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16, the latter was found to be quite resistant toward rear­
rangement at room temperature (see above), raising the pos­
sibility of further a alkylation if desired. In refluxing carbon 
tetrachloride-cyclohexene for ca. 8 h, 16 rearranged and 
eliminated phenylsulfenyl chloride (~*3), affording the rela­
tively stable vinyl ketone 17 in 84% yield. Once 17 had been 
obtained, an intended conjugate addition with other nucleo-

philes was, of course, possible. Thus, 2-methyl-l,3-cyclopen-
tanedione smoothly reacted with 17 to give the prochiral, po-
lyfunctional trione 18 (52% overall from 15 without isolation 

CH3O' 

CH3O 

19 20 

of intermediates). It can be seen that 18 (or analogous deriv­
atives originating from 11 and active methylene compounds 
other than malonate) has potential capabilities similar to firmly 
established Torgov-Smith estrane intermediates19 such as 19 
as well as the pyridine trione 20, which has been cyclized with 
high asymmetric specificity.20 

At this stage, the synthetic utility of 7-chloroallyl sulfoxides, 
which can be assembled in various ways, is clearly indicated. 
During the sequence proceeding from 4 to 18, we have kept the 
latent enone system of 17 unavailable (11,14) while malonate 
displacements and alkylations were performed at another 
electrophilic site. It is clear that active methylene compounds 
other than malonic esters can react with 11, providing access 
to a variety of analogues of 17 and 18 having potential as ste­
roid intermediates. 

Finally, we have also observed that 7,7-dichloroallyl sul­
foxides can lead to a,/3-unsaturated acid chlorides, as predicted 
by the transformations in Scheme I. Conversion of 21 to ac-
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rylanilide in 65% yield illustrates21 the possibilities for nu­
cleophilic quenching, although we have not extended investi­
gations in this direction and do not plan to. 

In future publications, we will report on the utility of 18 and 
related compounds in steroid synthesis. 

Experimental Section 

General Considerations. Melting points, determined on a "Mel-
Temp" capillary tube apparatus, and boiling points are uncorrected. 
Infrared spectra were recorded on a Beckman IR-5A (or Perkin-Elmer 
Model 267) spectrometer and were calibrated using the 1603 cm - ' 
band of polystyrene. Ultraviolet spectra were recorded on a Perkin-
Elmer Model 202 instrument. NMR spectra were obtained with 
Varian T-60 or Joelco 100-MHz spectrometer, using Me4Si as internal 
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standard in chloroform-^ or other solvents as noted. Mass spectra were 
obtained on a Perkin-Elmer RMU-6E mass spectrometer at 70 eV 
ionization potential. Elemental analyses were performed by Instranal 
Laboratories (Renssalear, N.Y.) or Atlantic Microlab (Atlanta, Ga.). 
When referring to "standard workup", a reaction mixture was par­
titioned between organic and aqueous layers; the former was washed 
with saturated sodium chloride solution, dilute acid or base where 
necessary, and finally dried over anhydrous sodium sulfate or mag­
nesium sulfate. After solvent removal, product mixtures were 
subjected to GLC, TLC, and column chromatography as noted. Re­
corded temperatures in "kugelrohr" bulb-to-bulb distillation refer 
to the heating oven. 

l,2,4-Trichloro-2-butene22 (4). A mixture of 2,3,4-trichloro-l-
butene (160 g, 1 mol), triphenylphosphine (8.0 g, 0.031 mol), and 
hydroquinone (1 g) was stirred under argon at 150-160 0 C for 6 h. 
The dark solution was then distilled, giving 134.5 g (84% recovery) 
of trichlorobutenes, bp 55-90 °C (lOTorr). VPC analysis indicated 
this to be a 75:25 mixture of l,2,4-trichloro-2-butene (4) and 2,3,4-
trichloro-1-butene, respectively. Fractionation with a 30-cm jacketed, 
helices-packed column afforded 86.9 g (54%) of pure 4, bp 89 0 C (30 
Torr) (lit.13 65-67 0 C (10 Torr)): ir (neat) 1648 cm"1; NMR 
(CDCl3) 6 6.12 (U, J = 7.4 and 0.8 Hz, 1 H), 4.18 (d, J = 7.4 Hz, 2 
H), and 4.18 (d, / = 0.8 Hz, 2 H). 

2-Chloro-l,4-bis(phenylthio)-2-butene (5). An ethanolic thio-
phenoxide solution was obtained by dropwise addition of 6.8 ml (66 
mmol) of freshly distilled thiophenol in 30 ml of ether to freshly pre­
pared sodium ethoxide (from 1.52 g, 0.066 g-atom, of sodium) in 30 
ml of anhydrous ethanol under argon. 1,2,4-Trichloro-2-butene (4.78 
g, 30 mmol) in 10 ml of ether was gradually added to the above thio-
phenoxide and the resultant solution was stirred overnight. Aqueous 
hydrolysis and ether extraction, followed by standard workup gave 
7.92 g (86%) of 5 as a pale yellow oil, bp 148 0 C (0.01 Torr), pure by 
TLC: ir (neat) 1642 (w), 738 (s), and 689 (s) cm- ' ; NMR (CDCl3) 
S 7.7 (br s, 10 H), 5.62 (br t, J = 7 Hz, 1 H), 3.58 (br s, 2 H), and 3.53 
(d ,y = 7 Hz, 2 H ) . 

For analytical purposes, a sample of 5 in methylene chloride was 
oxidized (100% yield) with m-chloroperbenzoic acid to the crystalline 
bis sulfone, mp 149-150 0 C (from methanol). 

Anal: (Ci6Hi5S2ClO4) C, H. 
Preparation of l-Phenylsulfinyl-3-buten-2-one (8). /«-Chloroper-

benzoic acid (5.18 g, 30 mmol) in 250 ml of methylene chloride was 
gradually added to 15 mmol (4.60 g) of 5 (in methylene chloride) 
during 2 h at room temperature. After 1 h more, the reaction mixture 
was poured into 50 ml of 10% sodium sulfite and then subjected to 
standard workup. Solvent removal in vacuo afforded 5.09 g (—100%) 
of crude bis sulfoxide 6, which was suitable for preparing 8. However, 
if the oily 6 was dissolved in 15 ml of carbon tetrachloride containing 
1 ml of cyclohexene and kept overnight at 0°, 6 could be obtained as 
a waxy white solid (ca. 70% of theory, perhaps mainly the less soluble 
of the two diastereomeric forms of 6): ir (KBr) 1640 (w, > C = C < ) 
and 1035 (s, > S ^ O ) cm"1 . 

Bis sulfoxide 6 (678 mg, 2 mmol) dissolved in 10 ml of carbon tet­
rachloride containing cyclohexene (330 mg, 4 mmol) and a trace of 
hydroquinone was refluxed for 3 h under argon. Solvent evaporation 
afforded 820 mg (quantitative yield) of an oily mixture of 8 and 
rra«.s-2-chloro-l-thiophenylcyclohexane (3). This oil was dissolved 
in several milliliters of ether and stored in a freezer for ca. 2 days, 
whereupon rosette-like crystals of pure 8 were obtained (332 mg, 85% 
yield), mp 43.5 0 C (from methylene chloride-ether): uv Xmax (95% 
C2H5OH) 216 nm (t 14 600): ir (neat) 1675 ( > C = 0 ) , 1613 
( > C = C < ) , and 1040 cm"1 ( > S ^ O ) ; NMR (CDCl3) i 7.53 (m, 5 
H), 6.37-5.77 (m, ABC system, 3 vinyl H), and 4.08 (AB quartet with 
7AB = 13.7 Hz); mass spectrum (70 eV) m/e, M + a t 195, 178, and 125 
(base peak). 

Ana l : (C | 0 HioS0 2 )C , H. 
Reaction of l-Phenylsulfinyl-3-buten-2-one (8) with Carbon Nu-

cleophiles. A. With 2-Methyl-l,3-cyclopentanedione. A mixture of 
2-methyl-l,3-cyclopentanedione (224 mg, 2 mmol), pyridine (0.2 ml, 
2.6 mmol), and 8 (388 mg, 2 mmol) in 10 ml of benzene was refluxed 
under argon for 6 h. The cooled mixture was filtered to remove a trace 
of unreacted dione, and then the solvent was evaporated to leave 635 
mg of crude Michael adduct 10: ir (neat) 1758, 1720 ( > C = 0 ) , 1034 
O S ^ O ) , and 747 and 688 c m - ' (aryl); NMR (CDCl3), 5 7.54 (s, 
5 H), 3.80 (s, 2 H), 2.77 (s, 4 H), 2.48 (t, J = 7 Hz, 2 H), 1.82 (t, J 
= 7 Hz, 2 H ) , and 1.05 (s, 3 H). 

A sample of 10 was reduced with aluminum amalgam in 10% 

aqueous tetrahydrofuran23 and the product worked up to provide 
mainly 2-(3'-oxobutyl)-2-methyl-1,3-cyclopentanedione, identical 
with an authentic sample.24 

B. With Indole. l-Phenylsulfinyl-3-buten-2-one (8) (388 mg, 2 
mmol), indole (234 mg, 2 mmol), and 2 mg of hydroquinone in 15 ml 
of benzene were refluxed under argon for 8 h. Cooling afforded 501 
mg (80%) of crude product, which was recrystallized from acetone-
hexane to give tan crystals, mp 134-135 0 C dec: uv Xmax (95% 
C2H5OH) 222 (e 34 500), 284 (e 8400), and 292 nm (e 6300); ir (KBr) 
3378 (N-H) , 1703 ( > C = 0 ) , and 1030 c m - ' ( S ^ O ) . 

Anal: ( C 8 H 1 7 N O 2 S ) C, H, N. 
Ethyl 2-Carbethoxy-4-chloro-6-phenylthio-4-hexenoate (14). An 

ethanol solution of sodium thiophenoxide (50 mmol), prepared as 
above, was added to a cold (—78°) ether solution containing 8.37 g 
(53 mmol) of l,2,4-trichloro-2-butene (4) under argon. After warming 
to —20° during 5 h, the reaction mixture was hydrolyzed and worked 
up in the usual manner. Short-path distillation of the oily product 
(containing some unreacted 4 and disulfide 5) afforded 10.065 g (86%) 
of 11, bp 79-80 °C (0.01 Torr): ir (neat) 1645, 740, and 690 cm"1; 
NMR (CDCl3) <5 7.28 (br s, 5 H), 5.98 (br t, J = 7.4 Hz, 1 H), 4.10 
(br s, 2 H), and 3.67 (br d, J = 7.4, 2 H). 

For analytical purposes, a 1-g sample of 11 was oxidized with excess 
m-chloroperbenzoic acid in methylene chloride to the crystalline 
sulfone, mp 74 0 C (from C 2H 5OH). 

Anal : (Ci 0 HioS0 2 Cl 2 )C, H. 
Diethyl sodiomalonate (40 mmol) was prepared from sodium hy­

dride and diethyl malonate in 20 ml of 1,2-dimethoxyethane (DME), 
and the solution was cooled to - 7 8 ° . A DME solution of 11 (4.66 g, 
20 mmol) was gradually added, the solution was allowed to warm to 
room temperature, and was kept there for 40 h. Hydrolysis and 
standard workup gave a colorless oil, which was distilled to provide 
5.36 g (68%) of malonic ester 14, bp 148-150 °C (0.01 Torr), pure 
by GLC and TLC: ir (neat) 1733,1652,1232,1156,1030,858,741, 
and 691 cm"1; NMR (CDCl3) <5 7.27 (br s, 5 H), 5.73 (t, J = 7.2 Hz, 
1 H), 4.13 (q, / = 7.2 Hz, 4 H), 3.67 (t, J = 7.6 Hz, 1 H), 3.62 (br d, 
J = 7.2 Hz, 2 H), 2.88 (d, J = 7.6 Hz, 2 H), and 1.20 (q, J = 1.2 Hz, 
6 H ) . 

The crystalline sulfone, prepared from 14 by m-chloroperbenzoic 
acid oxidation, had mp 57-59 0 C (from ether-hexane). 

Anal: (C12H2IClO6S) C, H. 
Alkylation of 14 with m-Methoxybenzyl Bromide. Conversion of 

14 (5.35 g, 15 mmol) to its conjugate base was accomplished with 
sodium hydride (695 mg of 57% Nujol dispersion, 16.5 mmol) in DME 
at 0° under argon. After hydrogen evolution had ceased, 3.7 g (20 
mmol) of m-methoxybenzyl bromide25 in DME was added and the 
reaction mixture was kept overnight at room temperature prior to 
hydrolysis and standard workup. The crude oily product (three 
components by TLC) was chromatographied over Florisil, using 1:1 
hexane-ether as eluent, providing 6.62 g (93%) of pure (TLC) 15: ir 
(neat) 1733, 1640, 1265, 1206, 1184, 860, 780, 743, and 695 cm"1; 
NMR (CDCl3) 5 7.40-6.53 (br m, 9 H), 5.72 (t, J = 7 Hz, 1 H), 4.12 
(q, J = 7 Hz, 4 H), 3.72 (s, 3 H), 3.68 (d, / = 7 Hz, 2 H), 3.25 (s, 2 
H), 2.97 (s, 2 H), and 1.18 (t, J = 7 Hz, 6 H). 

The crystalline sulfone, derived from 15 by m-chloroperbenzoic 
acid oxidation, had mp 64-65 0 C (from ether-pentane). 

Anal: (C25H29ClO7S) C, H. 
5,5-Dicarbethoxy-6-(3'-methoxy)phenyl-l-hexen-3-one (17). 

Quantities of m-chloroperbenzoic acid (1 mmol) and sulfide 15 (477 
mg, 1 mmol) were reacted in methylene chloride and the reaction was 
worked up as usual to provide 499 mg (quantitative) of crude sulfoxide 
16 (ir showed sulfoxide at 1037 cm - 1 ) , which was immediately used 
for the rearrangement step. Refluxing 16 in carbon tetrachloride under 
argon with 4 mmol of cyclohexene and 2 mg of hydroquinone for 8 h, 
followed by solvent removal at 50 0 C (1 Torr) afforded 582 mg of 
enone 17 and r/-a«i-2-chloro-l-thiophenylcyclohexane (3). Gradient 
elution chromatography of this mixture over Florisil with hexane-
ether, ultimately (with pure ether) provided 291 mg (84%) of pure 
17: uv (95% C2H5OH) \ m a x 215 nm (e 15 300): ir (neat) 1730, 1698, 
1680, and 1607 era"1; NMR (CDCl3) <5 7.30-6.47 (br m, 4 H), 
6.35-5.67 (m, ABC system, 3 H), 4.22 (q, J = 7 Hz, 4 H), 3.72 (s, 3 
H), 3.42 (s, 2 H), 3.15 (s, 2 H), 1.25 (t, / = 7 Hz, 6 H); mass spectrum 
(70 eV) m/e, M + at 348, base peak at 121 (methoxytropylium 
ion). 

The analytical sample of 17 was prepared by "kugelrohr" bulb-
to-bulb distillation (160 °C (0.01 Torr)). 

Anal: (Ci9H2 4O6) C, H. 
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Addition of 2-Methyl-l,3-cyclopentanedione to Vinyl Ketone 17 
(—18). Sulfide 15 (954 mg, 2 mmol) was converted to sulfoxide 16 
and the latter rearranged as above to the mixture of 17 and 3. This, 
in turn, was dissolved in 10 ml of toluene and 1 ml of pyridine and 250 
mg (2.2 mmol) of 2-methyl-l,3-cyclopentanedione was added; the 
resulting solution was stirred at 100° for 48 h under argon. After re­
moval of solvent in vacuo, the residue was triturated with cold meth­
ylene chloride and unreacted dione was recovered by filtration. Florisil 
chromatography of the filtrate, with gradient elution employing 
ether-hexane mixtures, eventually afforded 479 mg (52%) of 18, 
which was further purified for analysis by "kugelrohr" distillation (210 
0C (0.01 Torr)): ir (neat) 1750, 1730, 1720, 1262, 1183, 860, 784, and 
700 cm-'; NMR (CDCl3) 5 1.07 (s, 3 H), 1.25 (t, J = 7 Hz, 6 H), 1.83 
(UJ = 6 Hz, 2 H), 2.37 (t, J = 6 Hz, 2 H), 2.77 (s, 4 H), 2.88 (s, 2 H), 
3.33 (s, 2 H), 3.75 (s, 3 H), 4.18 (q, J = 7 Hz, 4 H), and 6.5-7.3 
(complex m, 4 H). 

Anal: (C25H32O8) C, H. 
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Our initial observations of the ethoxycarbonyl group mi­
gration in epoxide rearrangements were made with a series of 
glycidic esters which did not all have the same substituents at 
the 3 position, the initial site of carbonium ion formation, and 
the sequence of migratory aptitudes established then was 
therefore questionable. The esters 1 were subsequently ex­
amined because the substitution at the 3 position theoretically 
favored the initial formation of a stabilized tertiary, benzylic, 
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